->>—>kfé Starburst

ANALYTICS ANYWHERE

Galaxy and Iceberg
Introduction Workshop

%}fé Starburst

TABLE OF CONTENTS

1. Setup a Galaxy Trial 2
2. Create a New Cluster 2
3. Create an Iceberg Catalog 5
4. Querying data in Starburst Galaxy 8
5. Importing Sample Data 11
6. Querying the Sample Data in Iceberg Tables 13
7. Data Modification Language (DML) with Iceberg 14
8. Merge Statement with Iceberg 16
9. Time travel 19
10. Working with Partitions 23
11. Altering Table Metadata 28
Appendix A 30

Links to Starburst Online Documentation 30
Appendix B 31

Ingesting raw csv data 31
Appendix C 34

Tips and Tricks 34
Appendix D 36

SQL in full 36

Starburst Galaxy and Iceberg 1

9\)}% Starburst
1. Setup a Galaxy Trial

https://www.starburst.io/platform/starburst-galaxy

2.Create a New Cluster

Select the ‘Create Cluster’ button having selected ‘Clusters’ on the left-hand menu.
Create the Cluster in the ‘Europe (Ireland)’ region. Give the Cluster a name, e.g.,
1is2023’.

Select the Standard Cluster Type, and the Free-Tier Size.
If you have spare credits, you can select a specific Cluster Size (e.g., X-Small, Small,
etc.).

The ‘Free’ Cluster is adequate for the workshop.

Select the ‘Europe (London)’ region.

Starburst Galaxy and Iceberg 2

%}fé Starburst

Create a new cluster X

Cluster name *

dis2023

Must start with a letter and only use lowercase letters{a-z), numbers (0-9), and
H hyphens (-}
1 Catalogs

2 catalogs selected hd

Cloud provider region *

™ Europe (London) X
Cluster type {
Execution mode *
{ & Standard v |
Cluster size *
{ Free v |
~— |dle shutdown time .
| 30 Minutes v ‘ |
| " The maximum idle time before a cluster is automatically suspended. |
Advanced settings v

Cancel Create cluster

Note: Ensure the tpch and tpcds catalogs are added to the cluster.

Also, setting the ‘Idle shutdown time’ to a value greater than the default is
recommended for this workshop (e.g., set to 30 minutes). Given the duration of the
workshop, it is preferable that time spent pausing and re-started clusters is minimized.

Under ‘Access control’ on the left-hand side of the screen — select ‘Roles and
privileges’.

Drill into the ‘accountadmin’ role (assuming this is your user Role — shown on the top
right of the screen).

Under the ‘Privileges’ tab, add on a Location privilege as per the below:

Starburst Galaxy and Iceberg

A
= ¢ Starburst
Add privilege

Assign to: accountadmin

Allow this role to access all or specific catalogs, tables, or clusters within your organization. Refer to our detailed

documentation on assigning privileges to roles & .

What would you like to modify privileges for?

O Account O Catalog O Cluster O Schema O Table O Column @ Location
O Function

Enter a storage location.

A storage location starts with s3://, gs://, or abfs:// and ends with /*

Storage location name *

s3://galaxy-data-inovation/* =

Create SQL

Cancel Add privileges

Ensure the ‘Create SQL’ box is checked.

Click on the ‘Add Privilege’ button.

Starburst Galaxy and Iceberg

%}fé Starburst
3. Create an Iceberg Catalog

Select ‘Catalogs’ on the left-hand, click the ‘Create Catalog’ button.
Select s3 as the Data Source.

Complete the wizard. Input the name of the catalog, e.g., iceberg (lower case).

Input the AWS Access Key and Secret:

Access Key: Provided on the day.
Secret: Provided on the day.
Default s3 bucket: galaxy-data-inovation
Directory Name: iceberg

Leave the Metastore as Starburst Galaxy.
Turn on the buttons to allow creating External Tables and Writes.

Select ‘Iceberg’ as the default Table format. Test the Connection.

If all is ok — Click on Connect Catalog.

The next screen relates to Access Controls.

Click ‘Save Access Controls’.

In the ‘Add to Cluster’ Screen — add the Iceberg catalog to the Cluster you created

previously.
You will now be taken to the Query Editor to query data.

Starburst Galaxy and Iceberg 5

Create catalog

Starburst Galaxy and Iceberg

Amazon S3

Cenfigure your catalog to query objects in Amazon S3. Learn more

about

Name and description

Frovide a unique name to Identify the catalog In your SQL queries In the query

edior and other clent tocis. The namespace fo

A tabie Is typically

<catalog.namex hema.namae> <tabie_name»

rx(a-zl rumbers (-1 and

Authentication to S3

Choose aut ticat 1 [to connect to S3

Authentication with *

(O crossaccount UM role (@) AWS acces
AKIAY UWE2MUNTWDEHJGE (7]
P ©

Metastore configuration

Canfigure access

© the metasio O previce meta

and mapping

Informaticn about the cbjects stored in Amazon &3

Hetastore type *

\ \
() #ite Metastore (8) Starburs: Galay

.

2l axy-data-movaton

studt drectary rare *

icederg

. Allow creating external tables

e © © ©

. Allow writing to external tables

Default table format

ect the default tabie format used for creating new tabkes. The catalog

wili be able to read from arny type 3 tolearnmare

Default tadble

(®) icetery () wwe () Oeitalake

Test connection

Valldate that the netwerk conf iguration allows Starburst Galaxy to connect to

the data scurce

Starburst

%}fé Starburst

Ensure you have the right Privilege to work with Objects in the Catalog.
Select the ‘Access Control’ tab on the left-hand side of the screen.
Drill into the ‘accountadmin’ role. Go to ‘Privileges’ tab.

View the ‘Privileges’ assigned. The Catalog you created should be listed under
‘Catalogs’.

Starburst Galaxy and Iceberg 7

%}fé Starburst
4. Querying data in Starburst Galaxy

We will use the Sample tpch dataset to run some queries.
Ensure the Cluster you created has the tpch catalog attached. Start the Cluster.
Cut and paste the following SQL into the Query Editor and run:

SELECT
COUNT(*) AS LINEITEMS,
Q.PARTKEY,
R.NAME,
P.ORDERKEY
FROM
tpch.tiny.customer AS R
INNER JOIN tpch.tiny.orders AS P ON R.CUSTKEY = P.CUSTKEY
INNER JOIN tpch.tiny.lineitem AS Q ON P.ORDERKEY = Q.ORDERKEY
GROUP BY
Q.PARTKEY,
R.NAME,
P.ORDERKEY
HAVING
COUNT(*) > 1
ORDER BY
1 DESC;

In the SQL, we are using the ‘tiny’ schema. You can use different scale factor schemas,
e.g., 'sf1’, ‘'sf100’, etc.

Note: the ‘sf1’ schema contains ~ 1.2GB of data, the ‘sf100’ schema contains ~ 120GB
of data.

The tpch and tpcds data is generated on the fly, so some compute is used in the
generation of the data.

For an example of a multi-way Table join:

SELECT
COUNTC*) AS LINEITEMS,
Q.PARTKEY,
R.NAME,
P .ORDERKEY,
T.SUPPKEY,

Starburst Galaxy and Iceberg 8

%}fé Starburst

U.PARTKEY,
V.NAME,
W.NAME as NATION,
X.NAME as REGION
FROM
tpch.tiny.customer AS R
INNER JOIN tpch.tiny.orders AS P ON R.CUSTKEY = P.CUSTKEY
INNER JOIN tpch.tiny.lineitem AS Q ON P.ORDERKEY = Q.ORDERKEY
INNER JOIN tpch.tiny.supplier AS T ON Q.SUPPKEY = T.SUPPKEY
INNER JOIN tpch.tiny.partsupp AS U ON T.SUPPKEY = U.SUPPKEY
INNER JOIN tpch.tiny.part AS V ON U.PARTKEY = V.PARTKEY
INNER JOIN tpch.tiny.nation AS W ON T.NATIONKEY = W.NATIONKEY
INNER JOIN tpch.tiny.region AS X ON W.REGIONKEY = X.REGIONKEY
WHERE
X.NAME = "EUROPE'
GROUP BY
Q.PARTKEY,
.NAME,
.ORDERKEY,
.SUPPKEY,
.PARTKEY,
.NAME,
.NAME,
X.NAME
HAVING
COUNT(*) > 1
ORDER BY
1 DESC;

=< cc 4 v =™

Note: If you want to test Query Federation — simply change the schema for certain
tables to use the ‘sf1’ schema, and others to use the ‘tiny’ schema, for example:

SELECT
COUNT(*) AS LINEITEMS,
Q.PARTKEY,
R.NAME,
P.ORDERKEY
FROM
tpch.sfl.customer AS R
INNER JOIN tpch.sfl.orders AS P ON R.CUSTKEY P.CUSTKEY

Starburst Galaxy and Iceberg 9

%}fé Starburst

INNER JOIN tpch.tiny.lineitem AS Q ON P.ORDERKEY = Q.ORDERKEY
GROUP BY

Q.PARTKEY,

R.NAME,

P.ORDERKEY
HAVING

COUNT(*) > 1
ORDER BY

1 DESC;

Note: the above is joining tables between two schemas in the same catalog — so not
true Query Federation. However — if you have matching keys in tables that are defined
in Galaxy on different sources — then you can join as above. This assumes you have
access to those Tables.

Starburst Galaxy and Iceberg

>>>k% Starburst
5. Importing Sample Data

We have Online Retail Transaction Data to use as the sample data.
We are using data in a modern file format — Parquet in this case.
Galaxy supports Iceberg tables in Parquet and ORC file format.

First create a Schema under the Iceberg Catalog you created previously:
CREATE SCHEMA iceberg.studentl
WITH

CLOCATION 's3://galaxy-data-inovation/iceberg/studentl/");

We then register an Iceberg Table in Galaxy to read in the Parquet files and Metadata:

CALL iceberg.system.register_table (

schema_name "studentl’,
table_name 'sales_land',
table_location 's3://galaxy-data-inovation/iceberg/studentl/"'

D;

Note: In this Lab we are assuming the Data Files have been processed and have been
made available in Iceberg format.

We are making this assumption in the interest of time. In many cases the Source data
will not be in a modern table format. Common examples would be files in text or csv
format.

There is a Section in the Appendix which walks through the additional steps to ingest
from csv files.

Validate the Table has been registered, run the following:

ANALYZE 1iceberg.studentl.sales_land;
SHOW STATS FOR iceberg.studentl.sales_land;
SELECT COUNT(C*) from iceberg.studentl.sales_land;

We will create another Table — called ‘sales?’, to highlight how a Partition is created. In
a later Section, we will add a Partition to an existing table which already contains data.
The Section will also review if the column — ‘country’ is a good candidate to use for
partitioning.

Starburst Galaxy and Iceberg

9\)}% Starburst

Note: the below will only work if you created the ‘sales_land’ table.

CREATE TABLE
iceberg.studentl.salesl
WITH
(
FORMAT = '"PARQUET'",
format_version = 2,
partitioning = ARRAY['country'],
type = "ICEBERG'
) AS
SELECT

FROM
iceberg.studentl.sales_land

Validate and profile the Table:

ANALYZE 1iceberg.studentl.salesl;
SHOW STATS FOR 1iceberg.studentl.salesl;
SELECT COUNT(C*) from iceberg.studentl.salesl;

Starburst Galaxy and Iceberg

9\){% Starburst

6. Querying the Sample Data in Iceberg Tables

Let’s run some Queries on the Sample Data to get an understanding of the Data Profile:

SELECT
COUNT(*) count,
COUNTRY
from
iceberg.studentl.salesl
GROUP BY
COUNTRY
ORDER BY
1 DESC;

SELECT * FROM "iceberg"."studentl"."sales" LIMIT 10,

Iceberg Tables contain additional metadata columns. We will work with the partitioning
metadata in a later section.

To view this metadata, run the SQL below (or change the catalog, schema, table name
if required:

SELECT * FROM "iceberg"."studentl"."salesl" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$properties" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$history" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$snapshots" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$manifests" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$partitions" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl1$files" LIMIT 10;

SELECT *, "$path", "$file_modified_time" FROM "iceberg"."studentl"."salesl" ;

Starburst Galaxy and Iceberg

%}fé Starburst
7. Data Modification Language (DML) with Iceberg

Let’s Insert some records into the Table:

INSERT INTO
"iceberg"."studentl"."salesl"

VALUES
('999999", '88888", "Galaxy T-Shirt',1,DATE('2023-05-11'),10.2,777,"'Sweden'),
('555555", '44444" 'Cmd BunBun',1,DATE('2023-05-12"),20.20,333, 'Sweden');

The above is an example of an Insert statement. For bulk imports, often the CTAS
(CREATE TABLE AS SELECT) syntax is used, to load in a Table to a new Table based
on the SELECT clause).

We will now run Updates on a particular value in a Table. First let’s look at a row:
SELECT

FROM
"iceberg"."studentl"."salesl"
WHERE
invoice '494234"

The value of the ‘price’ column for this item is ‘5.00’. Let’s update the price by 10%
using the following SQL:

UPDATE "iceberg"."studentl"."salesl"
SET

price = price * 1.1
where

invoice '494234"

The same SELECT statement against the row should show the updated value for price.
This may seem like a trivial capability to an experienced DBAs — but basic DML tasks
were often constrained or not available on legacy data lake Table Formats. This is no
longer the case with Iceberg.

The above logic would work if there were > 1 row with the invoice number ‘494234’
(e.g., try with invoice ‘537434’).

Deleting a row is straight-forward, for example:

Starburst Galaxy and Iceberg

9\)}% Starburst

DELETE FROM "iceberg"."studentl"."salesl"
WHERE
invoice '494234"

Validate the row has been deleted:

SELECT

FROM
"iceberg"."studentl"."salesl"
WHERE
invoice '494234"

In this case one row, but multiple rows could have been deleted if the WHERE clause
matched multiple rows.

Starburst Galaxy and Iceberg

%}fé Starburst
8. Merge Statement with Iceberg

When ingesting and processing data, inserting records as-is into a Table is a common
pattern. This is straight forward to handle as each record is treated as being
independent of each other. An example of this would be loading stock ticker records.
Each record is loaded, as each record or event is discrete — even though there will be
records for the same Stock (e.g. Acme Corp), any aggregations are often done as a
separate process.

Another common pattern is where there is a need for logic to determine if a record
already exists — and if so, what Data Manipulations to perform.

This is where the MERGE statement is often used. The MERGE contains logic to
evaluate the data — and to determine if a row should be UPDATED, DELETED, or
INSERTED.

One MERGE statement can often replace multiple SQL statements achieving the same
function.
In the Workshop, we will create the new data table:

CREATE TABLE
iceberg.studentl.sales2
(

invoice VARCHAR,
stockcode VARCHAR,
description VARCHAR,
quantity INT,
invoicedate date,
price decimal (8, 2),
customerid INT,
country varchar

)

We will input two rows into this Table.

INSERT INTO
"iceberg"."studentl"."sales2"
VALUES
('123456",'98765", 'Iceberg Badge',1,DATE('2023-05-11"),10.2,222, 'Sweden"),
('555555", '44444" | 'Starburst Swag',1,DATE('2023-05-12"),20.20,333, 'Sweden")

Starburst Galaxy and Iceberg

%}fé Starburst

To best understand what the MERGE is doing, let’s join the new and existing data (or
source and target) tables, and view the Matching records — which will get processed.

SELECT
a.*”,
b.
FROM
"iceberg"."studentl"."salesl" a
INNER JOIN
"iceberg"."studentl"."sales2" b on a.customerid = b.customerid

The above (on the first time you run, and before the MERGE), should return 1 x row
(assuming you ran the INSERT statement above).

@ Finished Query details (2 Trino Ul ¥ Download

Avg. r i
1.6 rows/s 3s 1
invoice stockcode description quantity invoicedate price customerid country

555555 44444 Cmd BunBun 1 2023-05-12 20.20 333 Sweden

This is informing us that the Merge statement will find one Matching row.
Looking at the new data Table — we can see there are two rows that will be processed
by the MERGE.

(© Finished - ! e Query details (2 Trino Ul ¥ Download
1rows/s 1s 2

invoice stockcode description quantity invoicedate price customerid country
123456 98765 Iceberg Badge 1 2023-05-11 10.20 222 Sweden

556555 4hbbh Starburst Swag 1 2023-05-12 20.20 333 Sweden

The MERGE will UPDATE the Matching row with a new ‘description’ — ‘Cmd BunBun’
will get replaced with ‘Starburst Swag’.

The second row was not matched so is treated as an INSERT.

Run the MERGE to confirm this.

MERGE INTO "iceberg"."studentl"."salesl" AS a USING "iceberg"."studentl"."sales2" AS b
ON (a.customerid = b.customerid) WHEN MATCHED
a.description b.description THEN
UPDATE
SET

Starburst Galaxy and Iceberg

%}fé Starburst

description b.description WHEN MATCHED THEN INSERT (
invoice,
stockcode,
description,
quantity,
invoicedate,
price,
customerid,
country
D)
VALUES
(
.invoice,
.stockcode,
.description,
.quantity,
.invoicedate,
.price,
.customerid,
.country

D;
Post the MERGE statement, the Inner Join of the two tables should now look like:

Finished ~ /V0-readsp ' o OQuery details (2 Trino Ul ¥ Download
@ 3.1 rows/s 1s 2 v

invoice stockcode description quantity invoicedate price customerid country
556555 4hb44 Starburst Swag 1 2023-05-12 20.20 333 Sweden

123456 98765 Iceberg Badge 1 2023-05-1 10.20 222 Sweden

The above confirms the Merge:

- Updated the Matching row with a new ‘description’.
- Inserted the row that did not match.

Starburst Galaxy and Iceberg

%}fé Starburst

9. Time travel

Time travel enables Queries to view data at a previous snapshot in time.

It can be used to assist:

- Discovery of historic data that has since been made unavailable.
- Restore Data that has been deleted or modified.
- Provides a reassurance that data can be recovered.

This exercise will require the student to input some of the values into SQL statements.
This because in Time travel — some of the scenarios will be specific to your own Iceberg
Tables.

Note: It is useful to be aware of some of the Galaxy date/time functions, for example try
running the below — in one block (select all lines and execute):

SELECT current_date;

SELECT current_timestamp; -- same as now()
SELECT now(); -- same as current_timestamp
SELECT current_time;

SELECT localtimestamp;

SELECT localtime;

SELECT current_time interval 'l' minute ;
SELECT current_time interval '2' hour;

SELECT current_date + interval '3' day ;

SELECT current_date - interval '4' month ;

SELECT current_date + interval '5' year ;

SELECT current_timestamp + interval '30' second ;
VALUES now(Q);

Let us look at the snapshots for the "iceberg"."student1"."sales1” Table:

SELECT * FROM "iceberg"."studentl"."salesl$snapshots" LIMIT 10;

Let’s perform an Insert into the sales1 table, notice one column is using the ‘current
date’ value:

INSERT INTO
"iceberg"."studentl"."salesl"

Starburst Galaxy and Iceberg

9\)}% Starburst

VALUES
('234567','43210", "trino logo',1,current_date,9.80,678, 'Sweden');

Again, run the snapshot command:

SELECT * FROM "iceberg"."studentl"."salesl$snapshots" LIMIT 10;

INSERT INTO
LLLLL "iceberg"”."demo"."sales1"
07 VALUES
08 C 10' 1,cur b)
09
) select "iceberg"."demo"."sales1" where customerid-678
v
© Finished ‘"/.] mv;s/s ! o.';zs " s Query details (3 Trino Ul ¥ Download
committed_at snapshot_id parent_id operation manifest_list summary
2023-04-13 09:03:12.287 Europe/London 7953391415042986875 NULL append s3://gmaws]/iceberg//demo/... { changed-partition-count =4
2023-04-13 09:09:54.182 Europe/London 1336138480992727642 7953391415042986875 overwrite s3://gmawsl/iceberg//demol... added-data-files =1, added-p.
2023-04-13 09:10:40.224 Europe/London 4617935311669146609 1336138480992727642 overwrite s3://gmaws]/iceberg//demo/... { changed-partition-count
2023-04-13 09:10:40.500 Europe/London 2238461439778013619 4617935311669146609 delete s3://gmawsl/iceberg//demol... {removed-files-size =14207, ¢
2023-04-13 09:16:35.246 Europe/London 631370732787792571 22384614397780136719 overwrite s3://gmawsl/iceberg//demol... { changed-partition-count =
2023-04-13 09:42:11.044 Europe/London 8845270651257416540 631370732787792571 append s3://gmawsl/iceberg//demol... { changed-partitior
2023-04-13 09:52:52.740 Europe/London 3521025749371337634 8845270651257416540 overwrite s3://gmawsl/iceberg//demol... {added-data-files = 1, added-p
2023-04-14 09:27:43.693 Europe/London 7981893097871279656 3521025749371337634 append s3://gmawsl/iceberg//demol... { changed-partition-count =

There should be > 1 snapshot file present (this depends on your activity in the lab).

If you cut and paste the ‘snapshot_id’ to a version before you ran the INSERT (with the
‘description’ = ‘trino logo’), then you should see no records.

The value of the ‘snapshot_id’ will be different for each student — as it depends on the
value generated by Iceberg in your lab.

In this scenario, from the above screen shot, the snapshot_id just before the INSERT is
3521025749371337634

SELECT

FROM

"iceberg"."studentl"."sales1" FOR VERSION AS OF 3521025749371337634
where

customerid = 678

The above returns no row — as the INSERT had not taken place.

Starburst Galaxy and Iceberg

%}fé Starburst

The same statement — without reference to the snapshot should show the row:
SELECT

FROM
"iceberg"."studentl"."salesl"
WHERE
customerid = 678

You can also use a timestamp to run time travel queries. The timestamp can be a literal
or else you can use a system date/time function.

An example of using a system function for the time travel query:

SELECT

FROM

"iceberg"."studentl"."sales1l" FOR TIMESTAMP AS OF (current_timestamp - interval '30'
minute)
WHERE

customerid = 678;

Adjust the interval (i.e. the value of ‘30" above) — to before or after the point-in-time
where you inserted the row with ‘customerid’ = 678.

The Query Result should change - if your date/time is before or after the INSERT.

The timestamp can be in a literal form (please adjust the value to match your present
date/time):

SELECT

FROM

"iceberg"."studentl"."sales1l" FOR TIMESTAMP AS OF TIMESTAMP '2023-04-14 11:00:29.803
Europe/Vienna'
WHERE

customerid = 678;

Starburst Galaxy and Iceberg

%}fé Starburst

Adjust the date/time — to before or after the point-in-time where you inserted the row
with ‘customerid’ = 678. The Query Results will change either side of this time
boundary.

In the event you were satisfied there was an error in updating data in an Iceberg Table,
you can revert to a previous snapshot.

In this case we will assume we don’t want to have the recent INSERT row in the Table.
Again — check the snapshot versions you have available:

SELECT * FROM "iceberg"."studentl"."sales1$snapshots" LIMIT 20;

And select the snapshot id with the version of the Table at the point in time before the

INSERT.
In this case it is - 3521025749371337634

CALL 1iceberg.system.rollback_to_snhapshot('studentl’, 'salesl', 3521025749371337634)

After the above statement is run — the Table no longer contains the row from the
previous INSERT.

Starburst Galaxy and Iceberg

%}fé Starburst

10. Working with Partitions

We previously created the "iceberg"."student1"."sales1" partitioned on ‘country’:

partitioning = ARRAY['country']

To view the Partitions on the Table, you can run the command:

SELECT * FROM "iceberg"."studentl"."salesl$partitions" LIMIT 50;
View the records, files, and data values in each partition.

Note: This section about Object Store is for information only. For many users, viewing or
interacting with the Object Store (buckets, folders, files, formats, etc.) is not something
you would be permitted or required to do (but DevOps, SecOps, Cloud Admins, Data
Engineers, Data Managers, Data Scientists, etc., would often be required to access).

In the Object Store (s3), each Partition resides in a Folder:

Copy S3 URI
data/
Objects Properties
Objects (43)
Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory Ato get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant them
permissions. Learn more [4
Actions v] ’ Create folder] [upload
Q Find objects by prefix 1 @
Name A Type v Last modified v Size v Storage class v
3 country=Australia/ Folder
[3 country=Austria/ Folder
3 country=Bahrain/ Folder
3 country=Belgium/ Folder
3 country=Bermuda/ Folder
3 country=Brazil/ Folder
3 country=Canada/ Folder

Under each folder you will find the Data Files (we defined them as Parquet file format) in
the Iceberg Table definition.

Starburst Galaxy and Iceberg

é\)k% Starburst

Objects (4)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [Ato get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant them

permissions. Learn more [4

Actions ¥ H Create folder ‘ [® upload

Q Find objects by prefix 1 0]
Last
Name 4 Type ¥ modified v 3
April 13,

[20230413_080253_03723_bk5de-361971d6-21ad-4275-8155-0cefd8918b44.parquet#%2Ficeberg

2023,
%2F%2Fdemo%?2Fsales1-1bae03a232d04fc7b4f28806af0ee045%2Fdata%2Fcountry%3DAustralia%2F20230413_080253_03723_bk5de- parquet 09:03:09 7.
361971d6-21ad-4275-8155-0cefd8918b44.parquet (U1"C*.01 :00)

April 13,
[20230413_080253_03723_bk5de-8235cdd6-0deb-47ef-97be-8dceb5232ea7.parquet#%2Ficeberg 2023
%2F%2Fdemo%?2Fsales1-1bae03a232d04fc7b4f28806af0ee045%2Fdata%2Fcountry%3DAustralia%2F20230413_080253_03723_bk5de- parquet 09_03’.10 7.
8235cdd6-0deb-47ef-97be-8dceb5232ea7.parquet (U1.'C4:01 00)

April 13,
[20230413_080253_03723_bk5de-8368af93-ceb0-40a6-a44d-c96a578566f8.parqueti#%2Ficeberg 2023
%2F%2Fdemo%?2Fsales1-1bae03a232d04fc7b4f28806af0ee045%2Fdata%2Fcountry%3DAustralia%2F20230413_080253_03723_bk5de- parquet 09'03"08
8368af93-ceb0-40a6-a44d-c96a578566f8.parquet (U1.'C4:01 00)

April 13,
[20230413_080253_03723_bk5de-8a431de6-d810-4386-8411-796352eda108.parquet#%2Ficeberg 2023
%2F%2Fdemo%?2Fsales1-1bae03a232d04fc7b4f28806af0ee045%2Fdata%2Fcountry%3DAustralia%2F20230413_080253_03723_bk5de- parquet 09'03"08 9.

8a431de6-d810-4386-8411-796352eda108.parquet
parg (UTC+01:00)

There will also be a ‘metadata’ folder, containing the various metadata and stats files.

Going back to the output of the SQL viewing the partitions information for the
"iceberg"."student1"."sales1" Table.

There is a huge skew of data in the ‘country’ = ‘United Kingdom’ partition.
This can be confirmed by running the SQL:

SELECT
COUNT(*) COUNT,
country
FROM
iceberg.studentl.salesl
GROUP BY
country
ORDER BY
1 DESC;

Starburst Galaxy and Iceberg

%}fé Starburst

(© Finished Query details (2 Trino Ul ¥ Download

534K ro‘ws/s : ls‘ ‘ 43
count country
981330 United Kingdom
17866 EIRE
17624 Germany
14330 France
5140 Netherlands

3811 Spain

3189 Switzerland

The UK records account for ~92% of all records. This makes ‘country’ potentially a bad
candidate to partition.

Let us explore an alternative partitioning column — or collection of columns (or hashes of
columns) to partition the Table.

Date and Time are often used as partition columns, the following will display the
distribution of records for each month in the data:

SELECT
COUNT(C*) COUNT,
(date_trunc('month', invoicedate)) MONTH

FROM

"iceberg"."studentl"."salesl"
GROUP BY

(date_trunc('month', invoicedate))
ORDER BY

1 DESC;

The Distribution based on months is reasonable — not perfect, but a candidate. There
are 27 x partitions in this dataset (humber may change based on student activity).

We could also evaluate each day — this dataset has 606 discrete values, so there
would be 606 x partitions. The SQL is below:

SELECT

COUNT(C*) COUNT,

(date_trunc('month', invoicedate)) MONTH
FROM

Starburst Galaxy and Iceberg

%}fé Starburst

"iceberg"."studentl"."salesl"
GROUP BY

invoicedate
ORDER BY

1 DESC;

Let us create another table to experiment with Partitions. We will create this table as a
copy, but this time we will partition by month. The SQL is as follows:

CREATE TABLE
"iceberg"."studentl"."sales3"
WITH
(
FORMAT = '"PARQUET'",
format_version = 2,
partitioning = ARRAY['month(invoicedate)'],
type = "ICEBERG'
) AS
SELECT

FROM
"iceberg"."studentl"."salesl";

View the partitions:

SELECT * FROM "iceberg"."studentl"."sales3$partitions" LIMIT 50;

There are 26 x Partitions in this Table (number can change based on activity).

If the Data Volumes and workloads dictated that more partitions are required — then
we can change the partitioning without having to re-create the Table.

For example, we could add 2 x buckets to each partition based on a hash of the
values in the ‘country’ column.

ALTER TABLE "iceberg"."studentl"."sales3"
SET PROPERTIES partitioning = ARRAY['month(invoicedate)', 'bucket(country, 2)']

Starburst Galaxy and Iceberg

9\)}% Starburst

If we knew there were queries that were based on a particular month — and filtered on
Country, then data will be located in one partition and in a sub-partition bucket file(s).

Again, view the partitions based on the updated partition:

SELECT * FROM "iceberg"."studentl"."sales3$partitions" LIMIT 50;

Add more data to the Table to view the data getting allocated to a particular partition
and bucket.

INSERT INTO
"iceberg"."studentl"."sales3"

VALUES
('123456",'98765", 'Iceberg Badge',1,DATE('2023-05-11"),10.2,222, 'Sweden"),
('555555", '44444" | 'Starburst Swag',1,DATE('2023-05-12"),20.20,333, 'Sweden'),
777777 ,'33333", 'Data Jedi T-Shirt',1,DATE('2023-05-13'),20.20,333, 'Finland")

General Comments:

When partitioning by date, a common issue can be the most recent data can be
‘hotter’ than historic data. This can cause a bottleneck on that one ‘hot’ partition.

This may not be an issue — it depends on the data access patterns — but it is a
consideration when determining Table design.

Partitioning strategy and best practices merits more than can be covered here. There
are many considerations — including the workloads that will run against the table, the
SQL constructs - such as the joins, filters, aggregates, predicates, and columns
selected.

The Volume of the data is another factor here. There should be a balance between
the number of partitions, the data distribution, the size of the files, the number of files,
avoiding sparse data partitions/files, Query performance, maintenance, etc.

Starburst Galaxy and Iceberg

9\){% Starburst

11. Altering Table Metadata

We can change the names of Tables Columns:

ALTER TABLE "iceberg"."studentl"."sales3" RENAME COLUMN stockcode to sku;

Run some SQL to validate the update:

SELECT * FROM "iceberg"."studentl"."sales3" LIMIT 10;

We can add a column to the Table:

ALTER TABLE "iceberg"."studentl"."sales3" ADD COLUMN category VARCHAR(50);

Run some SQL to validate the update:
DESCRIBE "iceberg"."studentl"."sales3";
INSERT INTO
"iceberg"."studentl"."sales3"
VALUES
('555555", '44444" | 'Starburst Swag',1,DATE('2023-05-12"),20.20,333, 'Sweden',

'"Merchandise')

SELECT * FROM "iceberg"."studentl"."sales3" WHERE category ;

We can drop a column:

ALTER TABLE "iceberg"."studentl"."sales3" DROP COLUMN category ;

Run some SQL to validate the update:

SELECT * FROM "iceberg"."studentl"."sales3" LIMIT 10;

We can rename the Table:

ALTER TABLE "iceberg"."studentl"."sales3" RENAME TO sales_consume;

Starburst Galaxy and Iceberg

9\)}% Starburst

Run some SQL to validate the update:

SELECT * FROM "iceberg"."studentl"."sales_consume" LIMIT 10,

Starburst Galaxy and Iceberg

9\)}% Starburst

Appendix A

Links to Starburst Online Documentation

Starburst Homepage:
https://docs.starburst.io/

Starburst Reference Documentation:
https://docs.starburst.io/latest/index.html

Details on S3 access:
https://docs.starburst.io/latest/connector/hive-s3.html

Starburst Galaxy and Iceberg

%}fé Starburst

Appendix B

Ingesting raw csv data

The bonus exercise below walks through the steps if you were to be given csv files, and
how to create an Iceberg based on those files.

Repeat the same steps as you did for creating the Iceberg Catalog — except create a
Hive Catalog.
The different steps are:

Enter a different catalog name, e.g. s3hive
Default directory name — hive

Allow External Tables and Writes

Default Table Format — hive

Create a Schema and then a Hive Table pointing to the csv files in the s3 bucket:
CREATE SCHEMA s3hive.studentl;

CREATE TABLE
s3hive.studentl.sales_land (

invoice VARCHAR,
stockcode VARCHAR,
description VARCHAR,
quantity VARCHAR,
invoicedate VARCHAR,
price VARCHAR,
customerid VARCHAR,
country VARCHAR

WITH

FORMAT = "CSV',

EXTERNAL_LOCATION 's3://galaxy-data-inovation/retail/",
format '"TEXTFILE",

textfile_field_separator = ', ',

Starburst Galaxy and Iceberg

9\)}% Starburst

skip_header_line_count = 1

);

CREATE TABLE
iceberg.studentl.sales_structure
(
invoice VARCHAR,
stockcode VARCHAR,
description VARCHAR,
quantity INT,
invoicedate date,
price decimal (8, 2),
customerid INT,
country varchar

)

WITH

(
FORMAT = 'PARQUET',
format_version = 2,
type 'TCEBERG'

D;

INSERT INTO iceberg.studentl.sales_structure
SELECT

invoice,

stockcode,

description,

TRY_CAST(Cquantity as INT),

DATE(

SUBSTR(invoicedate, 7, 4) t-t SUBSTR(invoicedate, 4, 2) t-t

SUBSTR(invoicedate, 1, 2)

) AS 1invoicedate,

CAST(price as decimal(8,2)),

TRY_CAST(Ccustomerid as INT),

country
from

s3hive.studentl.sales_land;

analyze iceberg.studentl.sales_structure;

Starburst Galaxy and Iceberg

9\){% Starburst

show stats for iceberg.studentl.sales_structure;
select * from iceberg.studentl.sales_structure limit 10;

Starburst Galaxy and Iceberg

9\)}% Starburst

Appendix C

Tips and Tricks

Make use of the three dots drop-down when you highlight a Table:

<> Query A 1411112022, 14:35 X 1/04/202

Query editor

<
Saved queries > @ gmeuropel 4
4
‘ v gmirlregion] 4
uery histor —
| Query y > gms3 4
c— > gms3hive 4
== (Catalogs — 4
> iceberg
4
> sample
{8 Clusters X 4
> T tpeds 4
v T tpch 4
4
| 2
|) 4
> s information_schema 4
> s8s sfl 4
@ Admin v > 6% sf100 4
> &% sf1000 .
A 4
e Access control > 2 s10000]
> &% sf100000 4
Users
> &% sf300 4
o > 6% sf3000 |
Roles and privileges
> &8s sf30000
v ses tiny (
Groups
> BB customer :
X . — i
Single sign-on Copy full path to clipboard
13
AP auth token Enter SELECT * FROM customer LIMIT 10 1
Enter DESCRIBE customer £
Service accounts
Enter SHOW CREATE TABLE customer :
& Cloud settings View details .

5 TAMNIE

You can multiple SQL Statements — as long as you have a semi-colon (‘;”) at the end of the
statement. The statements will run in sequence.

Starburst Galaxy and Iceberg

é\)k% Starburst

SELECT current_date;

SELECT current_timestamp; -- same as now()
SELECT now(); -- same as current_timestamp
SELECT current_time;

SELECT localtimestamp;

SELECT localtime;

SELECT current_time + interval '1' minute ;
SELECT current_time - interval '2' hour;

SELECT current_date + interval '3' day ;

SELECT current_date - interval '4' month ;

SELECT current_date + interval '5' year ;

SELECT current_timestamp + interval '30' second ;
VALUES now(Q);

SQL Examples:

SHOW ROLE GRANTS;

SHOW CATALOGS;

SHOW SESSION;

SHOW FUNCTIONS;

SHOW STATS FOR "iceberg"."studentl"."salesl"
ANALYZE "iceberg"."studentl"."salesl"

EXPLAIN ANALYZE SELECT * FROM "iceberg"."studentl"."salesl"

Starburst Galaxy and Iceberg

9\){% Starburst

Appendix D

SQL in full

Note: The SQL is written for ‘student]’. We recommend to make a Global substitution for the
string ‘student1’ with the value that you have been assigned, e.g. ‘student15’.

---- Student Notes from here
---- TPC-H Queries

SELECT

COUNT(*) AS LINEITEMS,

Q.PARTKEY,

R.NAME,

P.ORDERKEY
FROM

tpch.tiny.customer AS R

INNER JOIN tpch.tiny.orders AS P ON R.CUSTKEY = P.CUSTKEY

INNER JOIN tpch.tiny.lineitem AS Q ON P.ORDERKEY = Q.ORDERKEY
GROUP BY

Q.PARTKEY,

R.NAME,

P.ORDERKEY
HAVING

COUNT(*) > 1
ORDER BY

1 DESC;

SELECT
COUNTC*) AS LINEITEMS,
Q.PARTKEY,
R.NAME,
P .ORDERKEY,
T.SUPPKEY,
U.PARTKEY,
V.NAME,
W.NAME as NATION,
X.NAME as REGION

Starburst Galaxy and Iceberg

9\)}% Starburst

FROM
tpch.tiny.customer AS R
INNER JOIN tpch.tiny.orders AS P ON R.CUSTKEY = P.CUSTKEY
INNER JOIN tpch.tiny.lineitem AS Q ON P.ORDERKEY = Q.ORDERKEY
INNER JOIN tpch.tiny.supplier AS T ON Q.SUPPKEY = T.SUPPKEY
INNER JOIN tpch.tiny.partsupp AS U ON T.SUPPKEY = U.SUPPKEY
INNER JOIN tpch.tiny.part AS V ON U.PARTKEY = V.PARTKEY
INNER JOIN tpch.tiny.nation AS W ON T.NATIONKEY = W.NATIONKEY
INNER JOIN tpch.tiny.region AS X ON W.REGIONKEY = X.REGIONKEY
WHERE
X.NAME = "EUROPE'
GROUP BY
Q.PARTKEY,
.NAME,
.ORDERKEY,
.SUPPKEY,
.PARTKEY,
.NAME,
.NAME,
X.NAME
HAVING
COUNT(*) > 1
ORDER BY
1 DESC;

=< cc 4 v =™

SELECT
COUNT(*) AS LINEITEMS,
Q.PARTKEY,
R.NAME,
P.ORDERKEY
FROM
tpch.sfl.customer AS R
INNER JOIN tpch.sfl.orders AS P ON R.CUSTKEY P.CUSTKEY
INNER JOIN tpch.tiny.lineitem AS Q ON P.ORDERKEY = Q.ORDERKEY
GROUP BY
Q.PARTKEY,
R.NAME,
P.ORDERKEY
HAVING
COUNT(*) > 1

Starburst Galaxy and Iceberg

9\)}% Starburst

ORDER BY
1 DESC;

--DROP SCHEMA 1iceberg.studentl;

CREATE SCHEMA iceberg.studentl
WITH
(LOCATION = 's3://galaxy-data-inovation/iceberg//studentl');

CALL iceberg.system.register_table (
schema_name => 'studentl',
table_name => 'sales_land',
table_location => 's3://galaxy-data-inovation/iceberg/studentl/'

);

ANALYZE 1iceberg.studentl.sales_land;
SHOW STATS FOR 1iceberg.studentl.sales_land;
SELECT COUNT(C*) from iceberg.studentl.sales_land;

SELECT
COUNT(C*) count,
COUNTRY
from
iceberg.studentl.sales_land
GROUP BY
COUNTRY
ORDER BY
1 DESC;

--DROP TABLE 1iceberg.studentl.salesl;

CREATE TABLE
iceberg.studentl.salesl
WITH
(
FORMAT = '"PARQUET',
format_version = 2,

Starburst Galaxy and Iceberg

9\)}% Starburst

partitioning = ARRAY['country'],
type = "ICEBERG'
) AS
SELECT
*
FROM
iceberg.studentl.sales_land

ANALYZE 1iceberg.studentl.salesl;
SHOW STATS FOR 1iceberg.studentl.salesl;
SELECT COUNT(C*) from iceberg.studentl.salesl;

SELECT * FROM "iceberg"."studentl"."salesl" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$properties" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$history" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$snapshots" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$manifests" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl$partitions" LIMIT 10;

SELECT * FROM "iceberg"."studentl"."salesl1$files" LIMIT 10;

SELECT *, "$path", "$file_modified_time" FROM "iceberg"."studentl"."salesl" ;

INSERT INTO
"iceberg"."studentl"."salesl"

VALUES
('999999", '88888", "Galaxy T-Shirt',1,DATE('2023-05-11'),10.2,777,"'Sweden'),
('555555", '44444" ,'Cmd BunBun',1,DATE('2023-05-12"),20.20,333, 'Sweden")

SELECT
*
FROM
"iceberg"."studentl"."salesl"
WHERE
invoice = '494234"';
-- invoice = '537434';

UPDATE "iceberg"."studentl"."salesl"
SET

price = price * 1.1
WHERE

invoice = '494234"';

Starburst Galaxy and Iceberg

9\)}% Starburst

DELETE FROM "iceberg"."studentl"."salesl"
WHERE

invoice = '494234"';

--invoice = '537434';

CREATE TABLE
iceberg.studentl.sales?2
(

invoice VARCHAR,
stockcode VARCHAR,
description VARCHAR,
quantity INT,
invoicedate date,
price decimal (8, 2),
customerid INT,
country varchar

INSERT INTO
"iceberg"."studentl"."sales2"

VALUES
('123456",'98765", 'Iceberg Badge',1,DATE('2023-05-11"),10.2,222, 'Sweden"),
('555555", '44444" | 'Starburst Swag',1,DATE('2023-05-12"),20.20,333, 'Sweden")

SELECT * FROM "iceberg"."studentl"."sales2"

SELECT
a.”*,
b.*
FROM
"iceberg"."studentl"."salesl" a
INNER JOIN "iceberg"."studentl"."sales2" b on a.customerid = b.customerid;

MERGE INTO "iceberg"."studentl"."salesl" AS a USING "iceberg"."studentl"."sales2" AS b
ON (a.customerid = b.customerid) WHEN MATCHED
and a.description != b.description THEN
UPDATE
SET
description = b.description WHEN NOT MATCHED THEN INSERT (

Starburst Galaxy and Iceberg

9\){% Starburst

invoice,
stockcode,
description,
quantity,
invoicedate,
price,
customerid,
country

),
VALUES

(

.invoice,
.stockcode,
.description,
.quantity,
.invoicedate,
.price,
.customerid,

S © T T ©C ©T T ©

.country

D;

SELECT
FROM
"iceberg"."studentl"."salesl"
WHERE stockcode ('98765", '44444');

INSERT INTO
"iceberg"."studentl"."salesl"
VALUES
(
'234567",
'43210",
"trino logo',
1,
current_date,
9.80,
678,
'Sweden'

D;

Starburst Galaxy and Iceberg

9\)}% Starburst

SELECT * FROM "iceberg"."studentl"."salesl$snapshots" LIMIT 10;

SELECT
*
FROM
"iceberg"."studentl"."salesl"
--FOR VERSION AS OF 6254229475197879179
where
customerid = 678

SELECT

*
FROM

"iceberg"."studentl"."sales1l" FOR TIMESTAMP AS OF (current_timestamp - interval '10'
minute)
where

customerid = 678;

SELECT
COUNT(*) COUNT,
country
FROM
iceberg.studentl.salesl
GROUP BY
country
ORDER BY
1 DESC;

SELECT

COUNT(C*) COUNT,

(date_trunc('month', invoicedate)) MONTH
FROM

"iceberg"."studentl"."salesl"
GROUP BY

(date_trunc('month', invoicedate))
ORDER BY

1 DESC;

SELECT

Starburst Galaxy and Iceberg

é\)k% Starburst

COUNT(C*) COUNT,

(date_trunc('month', invoicedate)) MONTH
FROM

"iceberg"."studentl"."salesl"
GROUP BY

invoicedate
ORDER BY

1 DESC;

CREATE TABLE
"iceberg"."studentl"."sales3"
WITH
(
FORMAT = '"PARQUET'",
format_version = 2,
partitioning = ARRAY['month(invoicedate)'],
type = "ICEBERG'
) AS
SELECT
£ 3
FROM
"iceberg"."studentl"."salesl";

SELECT * FROM "iceberg"."studentl"."sales3$partitions" LIMIT 50;

ALTER TABLE "iceberg"."studentl"."sales3"
SET PROPERTIES partitioning = ARRAY['month(invoicedate)', 'bucket(country, 2)']

INSERT INTO
"iceberg"."studentl"."sales3"

VALUES
('123456",'98765", 'Iceberg Badge',1,DATE('2023-05-11"),10.2,222, 'Sweden"),
('555555", '44444" | 'Starburst Swag',1,DATE('2023-05-12"),20.20,333, 'Sweden'),
777777 ,'33333", 'Data Jedi T-Shirt',1,DATE('2023-05-13'),20.20,333, 'Finland")

SELECT * FROM "iceberg"."studentl"."sales3$partitions" LIMIT 50;

ALTER TABLE "iceberg"."studentl"."sales3" RENAME COLUMN stockcode to sku;

Starburst Galaxy and Iceberg

9\)}% Starburst

SELECT * FROM "iceberg"."studentl"."sales3" LIMIT 10;
DESCRIBE "iceberg"."studentl"."sales3";
ALTER TABLE "iceberg"."studentl"."sales3" ADD COLUMN category VARCHAR(50);
INSERT INTO

"iceberg"."studentl"."sales3"
VALUES

('555555", '44444" | 'Starburst Swag',1,DATE('2023-05-12"),20.20,333, 'Sweden',
"Merchandise')
SELECT * FROM "iceberg"."studentl"."sales3" WHERE category IS NOT NULL;
ALTER TABLE "iceberg"."studentl"."sales3" DROP COLUMN category ;
SELECT * FROM "iceberg"."studentl"."sales3" LIMIT 10;

ALTER TABLE "iceberg"."studentl"."sales3" RENAME TO sales_consume;

SELECT * FROM "iceberg"."studentl"."sales_consume" LIMIT 10,

--Sample SQL

SHOW ROLE GRANTS;

SHOW CATALOGS;

SHOW SESSION;

SHOW FUNCTIONS;

SHOW STATS FOR "iceberg"."studentl"."salesl"

--Sample Clean up, don't need to run.

DROP TABLE "iceberg"."studentl"."salesl" ;
DROP TABLE "iceberg"."studentl"."sales2";

Starburst Galaxy and Iceberg

DROP TABLE "iceberg".
DROP TABLE "iceberg".
DROP TABLE "iceberg".
DROP TABLE "iceberg".

"studentl".
"studentl".
"studentl".
"studentl".

DROP SCHEMA iceberg.studentl;

"sales3" ;
"sales_land";
"sales_structure";
"sales_consume";

DESCRIBE "iceberg2"."studentl"."sales_land";

Starburst Galaxy and Iceberg

Al
“7IN

Starburst

